
https://langdevcon.org
Seville 17-19 October, 2024

Kolasu and Lionweb:
an Integration Story
Alessio Stalla / Strumenta

https://langdevcon.org/

 Who am I?

Alessio Stalla
Language Architect at Strumenta
since 2020

Language Engineering Enthusiast
Lisp Hobbyist

Agenda
1. Kolasu and LionWeb Recap
2. Why Integrating: Use Cases
3. Similarities and Differences
4. Discussion

U09L

 Kolasu

● Strumenta’s Open Source library to support language
implementation on the JVM (Kotlin)

○ AST definition and transformations
■ AST nodes are defined as Kotlin classes

○ ANTLR Integration
○ Semantic Enrichment (symbol res., type system)
○ Interoperability → External Formats

● Part of the StarLasu family (multiplatform)

 LionWeb

● “[A]n ecosystem of interoperable components for building
language-oriented modeling tools on the web”
https://github.com/LionWeb-io/

○ Concretely, a meta-metamodel and storage format for
models (graphs with a primary containment hierarchy)

○ Bindings for several languages, incl. Java and TS
○ Plus a model repository to store and retrieve models

(APIs + reference implementation on Node+PGSQL)

https://github.com/LionWeb-io/

 Kolasu and LionWeb

● StarLasu ASTs and LionWeb models have many traits
in common (as we’ll see)

● We want interoperability with the LionWeb
ecosystem

AST ≠ Model

● Early on, we decided that Kolasu AST nodes are NOT
to be implementation of LionWeb-Java nodes:

○ There are some key differences (as we’ll see)
○ Kolasu and LionWeb can evolve independently

● So, this is the story of how LionWeb is integrated as
an interchange format in Kolasu

Use Cases

● To store and process StarLasu ASTs with third-party
LionWeb tools (e.g., the model repository)

● To consume (some) LionWeb models as StarLasu
ASTs:
○ Kolasu → LionWeb → Kolasu (backend)
○ Kolasu → LionWeb → Tylasu (frontend)
○ Third party → LionWeb → Kolasu

Kolasu+LW in Code Insight Studio

AST
UI

CLI

Parser or
Transpiler

Model Repo

Semantic Enrichment
(Symbol Resolution)

HTTP Web UI
LionWeb

Predecessor: EMF/ECore

● Before LionWeb, Kolasu already had the capability to
export to EMF/ECore (Eclipse)

● Why LionWeb then?
● EMF/ECore is basically Java+XML only

(JS/Python+JSON implementations exists but partial,
unmaintained, buggy)

Kolasu 1.5

● What we’ll discuss in the following applies to the
1.5.x version of Kolasu, that’s currently in use at
Strumenta.

● 1.6.x is mature, but hasn’t been used on real projects
yet

● Maybe next year!

Trivial Mappings & Similarities

● Let’s now look at how concepts in Kolasu map to
concepts in LionWeb

○ We’ll start from trivial 1-1 mappings and similar
concepts

○ We’ll then discuss the most important differences

Language

● Both Kolasu and LionWeb have the concept of a
Language which is a container of concepts (node
classes in Kolasu), primitive types, enums, …

● In Kolasu, this used to be implicit; however, already
with EMF/ECore interop it became necessary to
explicitly list all the node classes.

○ We used to call that a metamodel, but we switched
to language to better match LionWeb terminology.

Concept (1)

● A Concept represents the definition of a class of
nodes. It has a name and a number of features.

● In Kolasu 1.5, this is implicit: we use Kotlin
reflection to derive the structure of a node – which
properties are attributes, containments,
references, or internal/computed attributes.

● Kolasu looks at the type and annotations of each
property to determine its role.

Concept (2)

● A Concept in LW can have ancestors, IOW,
LionWeb supports traditional OO inheritance.

● Kolasu naturally supports inheritance because it uses
Kotlin classes as concepts.

● We can conclude that, despite the fact that Kolasu
1.5 doesn’t have an explicit representation of a
concept, it has all the capabilities required to derive
one.

Concepts, Languages, and Packages
● Roughly speaking, concepts are classes in Kolasu
● Kotlin supports packages to organize classes
● However, packages and languages are different:
○ A language allows to list all its elements
○ A package does not (easily)
○ A language is a higher-level concept, and could include

nodes from different packages.
○ Packages are just a way to organize source code and

avoid name clashes between different codebases.

Features
● In LionWeb, features are characteristics of a concept:
○ Attributes of primitive types (can’t be multiple)
○ Containments of other nodes (possibly multiple)
○ References to other nodes in the graph (single or multi)

● In Kolasu, we adopted the same terminology and similar
constraints (e.g. no lists of primitive types). However, in
1.5, we still refer to features as node properties taking
the terminology from Kotlin (and JavaBeans).

Primitive Types
● Kolasu doesn’t restrict primitive types: everything that’s

not a Node is a primitive type.
○ ⇒any property whose type is not Node or reference is

an attribute.
● However, if we want to export values of a primitive type

that is not one of the LionWeb built-in ones, we have to
provide a serializer (and deserializer on the other end).

Containments
● A containment is just a property whose type is a subtype

of Node, or a list whose elements are of a subtype of
Node

● The contained node has a reference back to its parent.
● In Kolasu 1.5, the parent isn’t always managed

automatically: some operations set it for you, but you can
also manually attach a node without setting its parent.

● In Kolasu 1.6, parent tracking is fully automated.

References
● Kolasu has the concept of ReferenceByName, an object

that has:
○ a name used as a key to resolve a reference
○ a pointer to the referred object
○ and other bookkeeping information that we’ll gloss over

● References are resolved during semantic enrichment
● They’re just references in memory
● How do we map them to LionWeb references?

Storage Model and Node IDs
● Kolasu: all AST nodes are in memory (conceptually)
● LionWeb: not all nodes are loaded in memory, or from

the same file, database, repository, etc.
● Kolasu: AST nodes are usually created as the result of

parsing source code, or transforming another AST
(derived models)

● LionWeb: nodes may be authored using a
projectional/structure editor (e.g. Freon, MPS, …) ⇒
they may have an identity of their own

Storage Model and Node IDs
● As a consequence:
○ All LionWeb nodes have an ID
○ Kolasu AST nodes don’t have an ID

● ⇒ when converting Kolasu AST nodes into LionWeb
nodes, we have to provide an ID

● ⇒ when converting Kolasu references into LionWeb
ones, we need to go through the node ID (which also
allows to store the target node elsewhere).

Node ID Strategies (1)
● We could consider various constraints when choosing a

strategy to assign IDs
○ Should a node ID remain constant across runs of the

application? E.g. if we parse the same file twice in two
different executions, should we maintain the same IDs?

○ Should a node ID remain constant across
transformations of the AST? For example, if we move a
statement inside a method, should it keep the same ID?

Node ID Strategies (2)
● Some possibilities:
○ Compute the ID using some defining attributes of the

node (semantic ID). E.g., the ID of a Java class node is
its package+name (with maybe Maven coordinates)

○ Compute the ID using the path from a well-defined
ancestor node, for example, in a Java method, the third
statement in the first for statement

○ Randomly assign the ID (e.g. with a UUID)

Node ID Strategies
● In Kolasu we have a NodeIdProvider interface with

several built-in implementations to provide the node ID
strategy

● The default strategy is the most flexible one:
○ If we know how to compute the semantic ID of a node,

do it (we have an IIN or Independent ID Node)
○ Otherwise, compute the ID combining the parent node’s

ID and the node’s path in the parent
○ This requires that the root of the AST is an IIN (it could be

a synthetic node representing the parsed file with its path or
checksum as the ID)

Partitions
● Lionweb divides models in partitions
● Kolasu doesn’t have such a concept
● Presently, we only deal with partitions when using the

model repository API, and we don’t represent them
as AST nodes

Objects that are not Nodes
● Kolasu has additional types of support objects that are

not AST nodes.
● When serializing these types of Kolasu objects to

LionWeb, we represent some of them as primitive types,
and some others as special nodes.

● Let’s look at them.

Objects that are not Nodes

● Point and Position represent line and column info (to
track a node’s position in the source code).

○ Structured data ⇒ nodes
○ However, nodes aren’t cheap, and every AST node has

a position which is made of 2 points → 3 extra nodes
○ So, we represent these as custom primitive types

Objects that are not Nodes

● Source represents where the node comes from (e.g. a file
with a certain path)

○ we omit it when serializing into LionWeb nodes
● Issue represents some issue in parsing (syntactic or

semantic) or just an information message
○ Represented as a LionWeb node

Objects that are not Nodes

● Token is a portion of the input text with an associated
type, can be used for syntax coloring

○ A single Token is an element of a list
○ Making them into nodes is not cheap
○ However, attributes cannot be multiple
○ ⇒ we “cheat” and create a primitive type representing a

“list of tokens” as a single value
● ParsingResult is an AST + issues + tokens
○ Just a LionWeb node with attributes + contained nodes

Other Advanced Features

● Kolasu-native client for the LW Model Repository
○ Based on LW-native client in LW-Kotlin

● Proxy Nodes
● CLI commands and Gradle tasks for:
○ Generating a LW Language from a Kolasu AST
○ Generating Kolasu AST classes from a LW Language

Wrapping It Up

● Kolasu and LionWeb have enough similarities so it’s
sensible to use LionWeb as an external format for Kolasu
ASTs

● Some differences exist especially around node IDs so
some extra complexity is needed

● Nonetheless we could use Kolasu and LionWeb together
successfully in our Code Insight Studio tool

https://langdevcon.org
Seville 17-19 October, 2024

Q&A
Thanks

U09L

https://langdevcon.org/

https://twitter.com/strumenta

https://www.linkedin.com/company/strumenta

https://strumenta.community/

 https://strumenta.com/

 Thank you!

